An Analysis of the Minimal Dissipation Local Discontinuous Galerkin Method for Convection-Diffusion Problems

نویسندگان

  • Bernardo Cockburn
  • Bo Dong
چکیده

We analyze the so-called the minimal dissipation local discontinuous Galerkin method for convection-diffusion or diffusion problems. The distinctive feature of this method is that the stabilization parameters associated with the numerical trace of the flux are identically equal to zero in the interior of the domain; this is why its dissipation is said to be minimal. We show that the orders of convergence of the approximations for the potential and the flux using polynomials of degree k are the same as those of all known discontinuous Galerkin methods, namely, (k + 1) and k, respectively. Our numerical results verify that these orders of convergence are sharp. The novelty of the analysis is that it bypasses a seemingly indispensable condition, namely, the positivity of the above mentioned stabilization parameters, by using a new, carefully defined projection tailored to the very definition of the numerical traces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of an Embedded Discontinuous Galerkin Method with Implicit-explicit Time-marching for Convection-diffusion Problems

In this paper, we analyze implicit-explicit (IMEX) Runge-Kutta (RK) time discretization methods for solving linear convection-diffusion equations. The diffusion operator is treated implicitly via the embedded discontinuous Galerkin (EDG) method and the convection operator explicitly via the upwinding discontinuous Galerkin method.

متن کامل

A Discontinuous Galerkin Multiscale Method for Convection-diffusion Problems

We propose an extension of the discontinuous Galerkin local orthogonal decomposition multiscale method, presented in [14], to convection-diffusion problems with rough, heterogeneous, and highly varying coefficients. The properties of the multiscale method and the discontinuous Galerkin method allows us to better cope with multiscale features as well as interior/boundary layers in the solution. ...

متن کامل

Discontinuous Galerkin Method for Fractional Convection-Diffusion Equations

We propose a discontinuous Galerkin method for fractional convection-diffusion equations with a superdiffusion operator of order α(1 < α < 2) defined through the fractional Laplacian. The fractional operator of order α is expressed as a composite of first order derivatives and a fractional integral of order 2 − α. The fractional convection-diffusion problem is expressed as a system of low order...

متن کامل

Third order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions

To avoid the order reduction when third order implicit-explicit Runge-Kutta time discretization is used together with the local discontinuous Galerkin (LDG) spatial discretization, for solving convection-diffusion problems with time-dependent Dirichlet boundary conditions, we propose a strategy of boundary treatment at each intermediate stage in this paper. The proposed strategy can achieve opt...

متن کامل

Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems

We study the convergence properties of the hp-version of the local discontinuous Galerkin finite element method for convection-diffusion problems; we consider a model problem in a one-dimensional space domain. We allow arbitrary meshes and polynomial degree distributions and obtain upper bounds for the energy norm of the error which are explicit in the mesh-width h, in the polynomial degree p, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2007